MATRIX TRANSFORMATIONS IN SOME SEQUENCE SPACES

A. A. Ansari, Seraj Ahmad Khan and Nafis Ahmad*
Department of Mathematics \& Statistics,
D. D. U. Gorakhpur University, Gorakhpur (U.P.) India
E-mail:- profaaansari@gmail.com, khanseraj86@gmail.com
*Department of Mathematics, Shibli National P.G. College, Azamgarh (U.P.) India
E-mail:- 786naksl@gmail.com

Abstract: In this paper, we represent some sequence spaces and give the characterization of $\left(l(p), l_{\infty}\right),(l(p), c),\left(w_{p}, c\right)$ and $\left(c_{0}(p), c_{0}(q)\right)$.

Keywords: Sequence spaces, matrix transformation, summability.
2000 AMS Subject Classification: 40H05, 46A45.

Introduction

Let X , Y be two nonempty subsets of the space of all complex sequences and $A=\left(a_{n k}\right)$ an infinite matrix of complex numbers $a_{n k}(n, k=1,2, \ldots)$. For every $x=\left(x_{k}\right) \in X$ and every integer n we write

$$
A_{n}(x)=\sum_{k=1}^{\infty} a_{n k} x_{k}
$$

The sequence $A x=\left(A_{n}(x)\right)$, if it exists, is called the transformation of x by the matrix A. We say that $A \in(X, Y)$ if and only if $A x \in Y$ when ever $x \in X$. If $p_{k}>0$ and $\sup p_{k}<\infty$, we define (see Maddox [1])

$$
\begin{aligned}
& l(p)=\left\{x: \sum k\left|x_{k}\right|^{p k}<\infty\right\} \\
& c(p)=\left\{x:\left|x_{k}-1\right|^{p k} \rightarrow 0 \text { for some } 1\right\} \\
& c_{0}(p)=\left\{x:\left|x_{k}\right|^{p k} \rightarrow 0\right\} \\
& l_{\infty}(p)=\left\{x: \sup \left|x_{k}\right|^{p k}<\infty\right\}
\end{aligned}
$$

